Choroidal vascularity index (CVI) - a novel biomarker

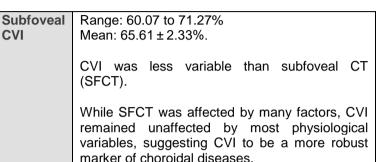
CVI is defined as the percentage of total choroidal area that is vascular. It is believed to be more accurate and repeatable than existing parameters such as choroidal thickness (CT).

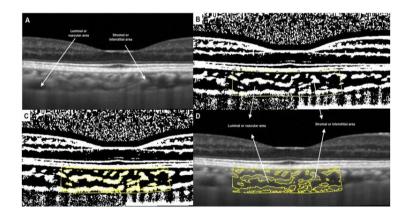
CVI is computed using our own protocol, by segmenting and binarizing OCT images using the public domain software. Fiii ImageJ (http://imageJ.nih.gov/ij/). A fully automated software is currently being developed by our group.

Since its proposal in the letter to the editor of American Journal of Ophthalmology in 2016, CVI has become a widely accepted research tool, with consistent findings leading to over 40 publications in peer reviewed journals. CVI has the potential as a practical tool for monitoring, diagnosing and prognosticating ocular diseases, with significant implications on clinicians' therapeutic decision making

CVIgrid – a global research consortium

CVIgrid was established in 2018 as a common platform connecting like-minded researchers worldwide. We aim to validate CVI and produce more high impact publications through multi-national collaborative studies, driving forward choroidal research for many years to come.


Members will have access to cvigrid.org, an online database for OCT image and data sharing. Researchers will be able to initiate new projects and offer collaboration for existing projects under CVIgrid.


Currently, CVIgrid has 18 partnering institutions from 10 countries.

CVI landmark study

Population-based study on 345 healthy eyes.

Choroidal EDI-OCT were segmented into total subfoveal choroidal area (TCA), vascular luminal (LA) and stromal (SA) area. CVI was calculated as the proportion of LA to TCA.

(A) Original SD OCT image.

(B) 1.5 mm segmentation block of the subfoveal choroidal area.

(C) Segmented OCT image using modified image binarization approach.

(D) Overlay of region of interest created after image binarization was performed on the SD OCT image.

Agrawal, R. et al. Choroidal vascularity index as a measure of vascular status of the choroid: Measurements in healthy eyes from a populationbased study. Sci. Rep. 6, 21090; doi: 10.1038/srep21090 (2016).

www.cvigrid.org

Adjunct Associate Professor Rupesh Agrawal

Senior Consultant Ophthalmologist National Healthcare Group Eye Institute Tan Tock Seng Hospital, Singapore

Honorary Consultant, Moorfields Eye Hospital, London, UK Adj Assc Professor, School of MSE, Nanyang Technological University, Singapore Adjunct Research Faculty, Singapore Eye Research Institute Clinical Senior Lecturer, Yong Loo Lin School of Medicine, National University of Singapore

> Interested collaborators please contact rupeshttsh@gmail.com

Tan Tock Seng HOSPITAL

Publications on CVI

Currently, there are more than 40 existing publications on CVI, obtainable via Google Scholar or PubMed search. This brochure provides a non-comprehensive coverage of CVI research, presenting only several notable studies in this field.

CVI in systemic diseases

Diabetes Mellitus Tan, K., Laude, A., Yip, V., Loo, E., Wong, E. P. and Agrawal, R. (2016), Choroidal vascularity index – a novel optical coherence tomography parameter for disease monitoring in diabetes mellitus?. Acta Ophthalmol, 94: e612-e616. doi:10.1111/aos.13044	Eyes of patients with DM showed decreased CVI with no corresponding change in choroidal thickness. Image binarization may be potentially useful as a tool to assess choroidal structures and vasculature.
Juvenile systemic Lupus Erythematosus Ağın, A., Kadayıfçılar, S., Sönmez, H. E., Baytaroğlu, A., Demir, S., Sağ, E., Eldem, B. (2019). Evaluation of Choroidal Thickness, Choroidal Vascularity Index and Peripapillary Retinal Nerve Fiber Layer in Patients with Juvenile Systemic Lupus Erythematosus. <i>Lupus</i> , <i>28</i> (1), 44– 50. https://doi.org/10.1177/0961203318814196	Choroidal thickness at five points, total choroidal area, luminal area and stromal were found to be higher in patients with jSLE, whereas retinal nerve fiber layer thickness and CVI were similar to those of the healthy control individuals.

CVI in ocular diseases

Age related macular degeneration	Eyes with exudative AMD demonstrated
Wei X, Ting DSW, Ng WY, Khandelwal N,	reduced choroidal vascularity index but
Agrawal R, Cheung CMG. Choroidal Vascularity	insignificant differences in choroidal
index: A Novel Optical Coherence	thickness compared with their fellow
Tomography Based Parameter in Patients With	eyes. Choroidal vascularity index may be a
Exudative Age-Related Macular Degeneration.	potential noninvasive tool for studying structural
<i>Retina.</i> 2017 Jun;37(6):1120-1125. doi:	changes in choroid and monitoring choroidal
10.1097/IAE.00000000001312	disease in exudative AMD.
Central serous chorioretinopathy	Increased CVI suggests increased vascular
Agrawal R, Chhablani J, Tan KA, Shah	component compared with the stromal component
S, Sarvaiya C, Banker A. CHOROIDAL	in acute CSC. Increased CVI was noted in fellow
VASCULARITY INDEX IN CENTRAL SEROUS	eye of the subjects with acute CSC in comparison
CHORIORETINOPATHY. Retina. 2016 Sep;	with age-matched healthy subjects. The CVI could
36(9): 1646-1651(6)	be a useful index for early diagnosis of CSC and to
DOI: https://doi.org/10.1097/IAE.0000000000010	assess the treatment response after laser
40	photocoagulation or photodynamic therapy.

CVI in monitoring treatment response

Response to corticosteroids in tubercular multifocal serpiginoid choroiditis Agarwal A, Agrawal R, Khandelwal N, Invernizzi A, Aggarwal K, Sharma A, Singh R, Bansal R, Sharma K, Singh N, Gupta V. Choroidal Structural Changes in Tubercular Multifocal Serpiginoid Choroiditis. Ocul Immunol Inflamm. 2017 Oct 11:1-7. doi: 10.1080/09273948.2017.1370650.	CVI provides insight into structural changes in choroid in TB MSC. During the active disease, there is relative decrease in choroidal vascularity. As the lesions heal, choriocapillaris atrophy occurs with remodeling of choroid.
Response to systemic corticosteroids in VKH disease Jaisankar D, Raman R, Sharma HR, Khandelwal N, Bhende M, Agrawal R, Sudharshan S, Biswas J. Choroidal and Retinal Anatomical Responses Following Systemic Corticosteroid Therapy in Vogt- Koyanagi-Harada Disease Using Swept- Source Optical Coherence Tomography. Ocul Immunol Inflamm. 2017 Jul 12:1-9. doi: 10.1080/09273948.2017.1332231	Mean CT significantly improved from 83.1 ± 8.75 to $156.4\pm62.73\mu$ m (p = 0.008) in the zone with pre-CT <100 μ m and significantly decreased from 336.1 ± 17.28 to $266.28\pm81.39\mu$ m(p = 0.008) in the zone with pre-CT > 300 μ m. We have shown choroidal remodeling in VKH. SS-OCT can serve as an important noninvasive tool in assessment of treatment response in patients with VKH disease.

CVI in surgery

Vitrectomy Rizzo, S. Savastano, A. , Finocchio, L. , Savastano, M. C., Khandelwal, N. and Agrawal, R. (2018), Choroidal vascularity index changes after vitreomacular surgery. Acta Ophthalmol, 96: e950-e955. doi: <u>10.1111/aos.13776</u>	CVI was higher in vitrectomy group, possible due to the retinal traction and distortion from epiretinal membrane which affected the choroid. CVI decreased in operated eye following vitrectomy because vitrectomy reduces traction and VEGF, thereby reducing the choroid's vascular area.
Phacoemulsification Chen, H., Wu, Z., Chen, Y., He, M., & Wang, J. (2018). Short-term changes of choroidal vascular structures after phacoemulsification surgery. BMC Ophthalmology, 18(1). doi:10.1186/s12886-018- 0749-7	Phacoemulsification induced increased CVI in patients diagnosed with cataract. Evaluation of the long-term change of CVI following surgery may provide valuable information for studying the relationship between phacoemulsification and disorders of the choroid.

For further enquiry, please contact

A/Prof. Rupesh Agrawal (<u>rupeshttsh@gmail.com</u>) Mr. Ding Jianbin (<u>dingjianbin97@gmail.com</u>) Mrs. Neha Khandelwal (<u>nehattsh@gmail.com</u>) Or visit www.cvigrid.org